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Exact Wave Functions of Time-Dependent
Hamiltonian Systems Involving Quadratic, Inverse
Quadratic, and (1/x̂) p̂ + p̂(1/x̂) Terms
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We use the dynamical invariant method to derive quantum-mechanical solution of time-
dependent Hamiltonian system consisting quadratic potential, inverse quadratic poten-
tial, and (1/x̂) p̂+ p̂(1/x̂). The term in Hamiltonian containing (1/x̂) p̂+ p̂(1/x̂) gives
the expression such as (1/x̂)(∂/∂ x̂) in coordinate space, which we can often meet in
radial equation of quantum many body problem. The wave functions differed only a
time-dependent phase factor from the eigenstates of the invariant operatorÎ and ex-
pressed in terms of an associated Laguerre function.
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1. INTRODUCTION

The analysis and investigation of quantum harmonic oscillator contributed to
the development of modern physics (Moshinsky and Smirnov, 1996). The quantum
state of time-independentN-body problem with harmonical and inverse quadratic
potential has been obtained by Calogero (1969a). He derived complete energy
spectrum and all the corresponding eigenfunctions of the system. In this paper, we
extend this method to the somewhat more complicated case where the coefficients
of the Hamiltonian depend explicitly on time. The quantum solutions for time-
dependent Hamiltonian systems have been studied in the literature for several
decades (Choi, 2002; Lewis and Riesenfeld, 1969; Pedrosaet al., 1997; Trifonov,
1999; Umet al., 1996, 1998, 2001a,b, 2002a,b; Yeonet al., 1993, 1994; Zhang
et al., 2002).

However, in most of the cases, the naive derivation of the quantum solutions
for the time-dependent Hamiltonian system by separation of variablesx̂ andt in
Schrödinger equation is not easy due to the complexity of the equation. One method
to remedy this defect is the introduction of dynamical invariants. The dynamical
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invariants, firstly observed by Lewis in 1967 (Lewis, 1967), can be used power-
fully to investigate the quantum state of the time-dependent Hamiltonian system.
Lewis and Riesenfeld used the dynamical invariant method to derive the quantum-
mechanical solution of a charged particle in a time-dependent electromagnetic field
(Lewis and Riesenfeld, 1969). Afterwards, this method was developed further by
several authors (Korsch, 1979; Ray and Reid, 1979).

The translation invariant model ofN-body problem is observed by
Calogero (1996). The quantum states of the time-dependent harmonic oscilla-
tor has been studied in the literatures (Yeonet al., 1993, 1994). The susceptibility
for identical atoms subjected to an external force with tail is analyzed quantum-
mechanically (Umet al., 1996).

In this paper, we will derive the exact quantum state of the time-dependent
Hamiltonian systems involving quadratic, inverse quadratic, and (1/x̂) p̂+ p̂(1/x̂)
terms using dynamical invariant method. Our model can be applied to solve
the radial equation of time-dependent quantum many body system (Calogero,
1969a,b, 1971; Sutherland, 1971), the problem of noninteracting electrons that
the effective mass varies as time goes by under the vector potential chosen by
A = (By/2, Bx/2, 0) (J. R. Choi, unpublished; Dittrichet al., 1998) and the radial
equation for ordinary isotropic oscillator (Choi and Kweon, 2002; Shankar, 1979).

2. THE EIGENVALUE AND EIGENSTATE OF INVARIANT OPERATOR

Let us consider the time-dependent Hamiltonian

Ĥ (x̂, p̂, t) = A(t) p̂2+ B(t)(x̂ p̂+ p̂x̂)+ C(t)

(
1

x̂
p̂+ p̂

1

x̂

)
+ D(t)x̂2+ E(t)

1

x̂2
, (1)

whereA(t), . . . , E(t) are time-dependent coefficients that differentiable with re-
spect to time, andA(t) 6= 0. Note that the term containing (1/x̂) p̂+ p̂(1/x̂) gives
the expression containing (1/x̂)(∂/∂ x̂) in coordinate space that appears in radial
equation of quantum many body problems (Calogero, 1969a,b, 1971; Sutherland,
1971). Here we would like to remark that as far as we know the time-dependent
Hamiltonian containing (1/x̂) p̂+ p̂(1/x̂) such as Eq. (1) have not yet been treated
in the literature.

The corresponding classical equation of motion can be derived using
Hamilton’s equation as

¨̂x − Ȧ

A
˙̂x + 2

(
2AD+ ȦB

A
− 2B2− Ḃ

)
x̂ + 2

(
Ȧ

A
C − Ċ

)
1

x̂

+ 4(C2− AE)
1

x̂3
= 0. (2)
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To facilitate the derivation of quantum state, let us introduce the invariant operator
of the system. We can assume that the trial invariant operator has the form.

Î (x̂, p̂, t̂) = α(t)x̂2+ β(t)(x̂ p̂+ p̂x̂)+ γ (t) p̂2+ δ(t)
(

1

x̂
p̂+ p

1

x̂

)
+ η(t)

1

x̂2
+ ξ (t), (3)

whereα(t)− ζ (t) are time-dependent coefficients which should be determined
afterwards. Owing to its definition, the invariant operator Eq. (3) must satisfy the
following relation.

dÎ

dt
= ∂ Î

∂t
+ 1

i h
[ Î , Ĥ ] = 0. (4)

By inserting Eqs. (1) and (3) into Eq. (4), we can derive the following relations
between coefficients

α̇ = 4(βD − αB), (5)

β̇ = 2(γ D − αA), (6)

γ̇ = 4(γ B− βA), (7)

δ̇ = 4(δB− βC), (8)

η̇ = 4(ηB− βE), (9)

ξ̇ = 4(δD − αC), (10)

ηA = γ E, (11)

ηC = δE, (12)

δA = γC. (13)

To simplify the problem, let us impose the following auxiliary condition (Trifonov,
1999)

E(t)

A(t)
= Constant. (14)

Then we can solve Eqs. (5)–(13) to give the explicit value of coefficients in invariant
operator as

α(t) = 1

4A2
(2Bs(t)− ṡ(t))2+ E

A

1

s2(t)
, (15)

β(t) = 1

2A
(2Bs2(t)− s(t)ṡ(t)), (16)

γ (t) = s2(t), (17)
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δ(t) = C

A
s2(t), (18)

η(t) = E

A
s2(t), (19)

ξ (t) = 4
∫ t

0

[
C D

A
s2(t)− C

4A2
(2Bs(t)− ṡ(t))2− C E

A

1

s2(t)

]
dt, (20)

wheres(t) is some time-dependent classical solution of the following differential
equation

s̈(t)− Ȧ

A
ṡ(t)+ 2

(
2AD+ ȦB

A
− 2B2− Ḃ

)
s(t)− 4AE

1

s3(t)
= 0. (21)

By inserting Eqs. (15)–(20) into Eq. (3), we can obtain the full expression of
invariant operator as

Î (x̂, p̂, t) =
[

1

4A2
(2Bs(t)− ṡ(t))2+ E

A

1

s2(t)

]
x̂2+ 1

2A
(2Bs2(t)

− s(t)ṡ(t))(x̂ p̂+ p̂x̂)+ s2(t) p̂2+ C

A
s2(t)

(
1

x̂
p̂+ p̂

1

x̂

)
+ E

A
s2(t)

1

x̂2
+ ξ (t). (22)

Let us denote the eigenvalue and eigenstate of the invariant operatorÎ (x̂, p̂, t) as
λ andφ(x̂, t), respectively:

Î (x̂, p̂, t)φ(x̂, t) = λφ(x̂, t). (23)

Substitution of Eq. (22) into Eq. (23) and after some arrange, we obtain that[
∂2

∂ x̂2
+
(

a
1

x̂
− bx̂

)
∂

∂ x̂
− cx̂2− d

1

x̂2
+3

]
φ(x̂, t) = 0, (24)

where

a = 2iC

h A
, (25)

b = i

h A

(
ṡ

s
− 2B

)
, (26)

c = 1

h2s2

[
1

4A2
(2Bs(t)− ṡ(t))2+ E

A

1

s2(t)

]
, (27)

d = 1

h A

(
iC + E

h

)
, (28)
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3 = i

2h A

(
2B− ṡ

s

)
+ 1

h2s2
(λ− ξ ). (29)

To solve Eq. (24), we introduce the variabler̂ as

r̂ = x̂2, (30)

and expressφ as

φ(r̂ , t) = r̂ keqr̂ y(r̂ , t), (31)

wherek andq are given by

k = 1

4

(
1− a+

√
(1− a)2+ 4d

)
, (32)

q = 1

4

(
b−

√
b2+ 4c

)
. (33)

By inserting Eq. (31) into Eq. (24) and after some rearrangement, we can obtain
the differential equation

ẑy′′(ẑ, t)+
(

2k+ 1

2
(1+ a)− ẑ

)
y′(ẑ, t)

+ 1

2

[
λ− ξ

2h

√
A

E
−m− l − 1

]
y(ẑ, t) = 0, (34)

where

ẑ = 1

2

√
b2+ 4c r̂ , (35)

m = 1

2

√
1+ 4E

h2A
, (36)

l = Cs(ṡ− 2Bs)

2h A
√

AE
. (37)

Because Eq. (34) satisfies associated Laguerre polynomial defined in Erd´ely
(1953), we can expressy as

y = Lm
n (ẑ), (38)

where

n = 1

2

[
λ− ξ

2h

√
A

E
−m− l − 1

]
. (39)



P1: GCY

International Journal of Theoretical Physics [ijtp] pp885-ijtp-467284 June 14, 2003 15:58 Style file version May 30th, 2002

858 Choi

From Eq. (39), we can see that the eigenvalue of the invariant operator can be
represented as

λ = 2h

√
E

A
(2n+m+ l + 1)+ ξ. (40)

Inserting Eqs. (32), (33), and (38) into Eq. (31), we obtain the nth eigenstate of
the invariant operator as

φn(x̂, t) =
 2

n+mPm

(
1

hs2

√
E

A

)(m+1)


1/2

x̂m+[1−2iC/( h A)]/2

× exp

{
−1

4

[
i

h A

(
2B− ṡ

s

)
+ 2

hs2

√
E

A

]
x̂2

}

× Lm
n

(
1

hs2

√
E

A
x̂2

)
, (41)

wheren+mPm is permutation that defined as (n+m)!/n!.

3. WAVE FUNCTION

The wave function of the system is different from the eigenstate of invari-
ant operator by only some time-dependent phase factor exp[i θn(t)] (Lewis and
Riesenfeld, 1969). Thus, we can represent the wave function as

ψn(x̂, t) = φn(x̂, t) exp[i θn(t)]. (42)

Equation (42) must satisfy the following Schr¨odinger equation

i h
∂ψn(x̂, t)

∂t
= Ĥ (x̂, p̂, t)ψn(x̂, t). (43)

By inserting Eqs. (1) and (42) into Eq. (43), we can obtain that

hθ̇n(t) =
〈
φn

∣∣∣∣ (i h
∂

∂t
− Ĥ

) ∣∣∣∣φn

〉
. (44)

Phaseθn(t) can be calculated by inserting Eq. (41) into Eq. (44) as

θn(t) = −(2n+m+ l + 1)
∫ t

0

√
A(t ′)E(t ′)
s2(t ′)

dt′ − 1

h

∫ t

0
ξ (t ′) dt′. (45)
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By substitution of Eqs. (41) and (45) into Eq. (42), we can obtain the full wave
function as

ψn(x̂, t) =
 2

n+mPm

(
1

hs2

√
E

A

)(m+1)


1/2

x̂m+[1−2iC/( h A)]/2

× exp

{
−1

4

[
i

h A

(
2B− ṡ

s

)
+ 2

hs2

√
E

A

]
x̂2

}
Lm

n

(
1

hs2

√
E

A
x̂2

)

× exp

[
−i (2n+m+ l + 1)

∫ t

0

√
A(t ′)E(t ′)
s2(t ′)

dt′ − i

h

∫ t

0
ξ (t ′) dt′

]
.

(46)

Thus, we can confirm that the wave function that can be used to calculate the
various quantummechanical expectation values is expressed in terms of associated
Laguerre function. ForC(t) = 0, Eq. (46) exactly reduces to that of Choi and
Kweon (2002).

4. SUMMARY

We used dynamical invariant method to investigate the quantum solution of
time-dependent Hamiltonian system involving quadratic, inverse quadratic, and
(1/x̂) p̂+ p̂(1/x̂) terms. Note that the term in Hamiltonian containing (1/x̂) p̂+
p̂(1/x̂) gives the corresponding expression such as (1/x̂)(∂/∂ x̂) in coordinate
space, which we can often meet in radial equation of quantum many body problem
(Calogero, 1969a,b, 1971; Sutherland, 1971). Although, the connections between
quantum solutions and classical solutions of the time-dependent harmonic oscil-
lator with and without an inverse quadratic potential has been studied by various
authors (Pedrosaet al., 1997; Umet al., 1996, 1998; Yeonet al., 1993, 1994), the
quantum solutions of time-dependent Hamiltonian containing (1/x̂) p̂+ p̂(1/x̂)
such as Eq. (1) have not yet been solved in the literature as far as we know.
To facilitate the derivation of quantum state, we introduced dynamical invari-
ant operator,̂I . We obtained the eigenvalue and eigenstate of invariant operator.
We derived the exact wave function of the system using the fact that it is dif-
ferent from the eigenstate of invariant operator by only some time-dependent
phase factor exp[i θn(t)]. The wave function of the system expressed in terms of
associated Laguerre function and can be used to calculate the various quantum-
mechanical expectation values. ForC(t) = 0, we confirmed that our results
agrees with that of previous papers (Choi and Kweon, 2002; Pedrosaet al.,
1997).
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Erdély, A. (1953).Higher Transcendental Functions, Vol. II, McGraw-Hill, New York.
Korsch, H. J. (1979). Dynamical invariants and time-dependent harmonic systems.Physics Letters

74A, 294–296.
Lewis, H. R., Jr. (1967). Classical and quantum systems with time-dependent harmonic oscillator-type

Hamiltonians.Physical Review Letters27, 510–512.
Lewis, H. R., Jr. and Riesenfeld, W. B. (1969). An exact quantum theory of the time-dependent

harmonic oscillator and of a charged particle in a time-dependent electromagnetic field.Journal
of Mathematical Physics10, 1458–1473.

Moshinsky, M. and Smirnov, Y. F. (1996).The Harmonic Oscillator in Modern Physics, Harwood
Academic Publishers, Australia.

Pedrosa, I. A., Serra, G. P., and Guedes, I. (1997). Wave functions of a time-dependent harmonic
oscillator with and without a singular perturbation.Physical Review A56, 4300–4303.

Ray, J. R. and Reid, J. L. (1979). More exact invariants for the time-dependent harmonic oscillator.
Physics Letters71A, 317–318.

Shankar, R. (1979).Principles of Quantum Mechanics, Plenum, New York, p. 325.
Sutherland, B. (1971). Quantum many-body problem in one dimension: Thermodynamics.Journal of

Mathematical Physics12, 251–256.
Trifonov, D. A. (1999). Exact solutions for the general nonstationary oscillator with a singular pertur-

bation.Journal of Physics A: Mathematical and General32, 3649–3661.
Um, C. I., Choi, J. R., and Yeon, K. H. (2001a). Exact quantum theory of the damped harmonic

oscillator with a linear damping constant.Journal of the Korean Physical Society38, 447–
451.

Um, C. I., Choi, J. R., and Yeon, K. H. (2001b). Exact quantum theory of a pendulum with a linearly
decreasing mass.Journal of the Korean Physical Society38, 452–455.

Um, C. I., Choi, J. R., Yeon, K. H., and George, T. F. (2002a). Exact quantum theory of the harmonic
oscillator with the classical solution in the form of Mathieu functions.Journal of the Korean
Physical Society40, 969–973.

Um, C. I., Choi, J. R., Yeon, K. H., Zhang, S., and George, T. F. (2002b). Exact quantum theory of a
lengthening pendulum.Journal of the Korean Physical Society41, 649–654.

Um, C. I., Kim, I. H., Yeon, K. H., George, T. F., and Pandey, L. N. (1996). Quantum analysis of the
susceptibility for identical atoms subjected to an external force with a tail.Physical Review A54,
2707–2713.

Um, C. I., Shin, S. M., Yeon, K. H., and George, T. F. (1998). Exact wave function of a harmonic
plus inverse harmonic potential with time-dependent mass and frequency.Physical Review A58,
1574–1577.



P1: GCY

International Journal of Theoretical Physics [ijtp] pp885-ijtp-467284 June 14, 2003 15:58 Style file version May 30th, 2002

Exact Wave Functions of Time-Dependent Hamiltonian Systems 861

Yeon, K. H., Kim, H. J., and Um, C. I. (1994). Wave function in the invariant representation and
squeezed-state function of the time-dependent harmonic oscillator.Physical Review A50, 1035–
1039.

Yeon, K. H., Lee, K. K., Um, C. I., George, T. F., and Pandey, L. N. (1993). Exact quantum theory of
a time-dependent bound quadratic Hamiltonian systems.Physical Review A48, 2716–2720.

Zhang, S., Choi, J. R., Um, C. I., and Yeon, K. H. (2002). Quantum uncertainties of mesoscopic
inductance-resistance coupled circuit.Journal of the Korean Physical Society40, 325–329.


